Interdependence of chronic hydraulic dysfunction and canopy processes can improve integrated models of tree response to drought

نویسندگان

  • D. Scott Mackay
  • David E. Roberts
  • Brent E. Ewers
  • John S. Sperry
  • Nathan G. McDowell
  • William T. Pockman
چکیده

Hydraulic systems of plants have evolved in the context of carbon allocation and fitness tradeoffs of maximizing carbon gain and water transport in the face of short and long-term fluctuations in environmental conditions. The resulting diversity of traits include a continuum of isohydry-anisohydry or high to low relative stomatal closure during drought, shedding of canopy foliage or disconnecting roots from soil to survive drought, and adjusting root areas to efficiently manage canopy water costs associated with photosynthesis. These traits are examined within TREES, an integrated model that explicitly couples photosynthesis and carbon allocation to soil-plant hydraulics and canopy processes. Key advances of the model are its ability to account for differences in soil and xylem cavitation, transience of hydraulic impairment associated with delayed or no refilling of xylem, and carbon allocation to plant structures based on photosynthetic uptake of carbon and hydraulic limitations to water transport. The model was used to examine hydraulic traits of cooccurring isohydric (pi~ non pine) and anisohydric (one-seed juniper) trees from a fieldbased experimental drought. Model predictions of both transpiration and leaf water potential were improved when there was no refilling of xylem over simulations where xylem was able refill in response to soil water recharge. Model experiments with alternative root-to-leaf area ratios (RR/L) showed the RR/L that supports maximum cumulative water use is not beneficial for supporting maximum carbon gain during extended drought, illustrating how a process model reveals trade-offs in plant traits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

What plant hydraulics can tell us about responses to climate-change droughts.

Climate change exposes vegetation to unusual drought, causing declines in productivity and increased mortality. Drought responses are hard to anticipate because canopy transpiration and diffusive conductance (G) respond to drying soil and vapor pressure deficit (D) in complex ways. A growing database of hydraulic traits, combined with a parsimonious theory of tree water transport and its regula...

متن کامل

Water deficits and hydraulic limits to leaf water supply.

Many aspects of plant water use -- particularly in response to soil drought -- may have as their basis the alteration of hydraulic conductance from soil to canopy. The regulation of plant water potential (Psi) by stomatal control and leaf area adjustment may be necessary to maximize water uptake on the one hand, while avoiding loss of hydraulic contact with the soil water on the other. Modellin...

متن کامل

Water use pattern and canopy processes of cashew trees during a drying period in West Africagoo

      Water flux in a young, 4-year old, cashew (Anacardium occidentale L.) plantation was studied over a dry season, from November 2001 to March 2002, in the forest-savannah transition zone of Ghana, West Africa. The temperature-difference method was used over this five-month period to quantify the diurnal and day-to-day whole-tree sap flow (Qt) and hence the canopy scale transpiration (Ec). M...

متن کامل

Water loss regulation in mature Hevea brasiliensis: effects of intermittent drought in the rainy season and hydraulic regulation.

Effects of soil and atmospheric drought on whole-tree transpiration (E(T)), leaf water potential (Ψ(L)) and whole-tree hydraulic conductance (K(T)) were investigated in mature rubber trees (Hevea brasiliensis, clone RRIM 600) during the full canopy stage in the rainy season in a drought-prone area of northeast Thailand. Under well-watered soil conditions, transpiration was tightly regulated in ...

متن کامل

Effect of Time and Amount of Supplemental Irrigation at Different Distances from Tree Trunks on Quantity and Quality of Rain-fed Fig Production

Supplemental irrigation under prolonged drought conditions has a key role in providing water for transpiration of rain-fed fig trees. The effect of different times and amounts of supplemental irrigation at different distances from the tree trunk on quantity and quality of Estahban rain-fed fig production was evaluated during two years. A randomized complete block design with four replications o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015